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ABSTRACT
This paper proposes a model-based genetic programming algo-
rithm for symbolic regression, called the ranging-binding genetic
programming algorithm (RBGP). The goal is to allow offspring to
retain the superiority of their promising parents during evolution.
Inspired by the concept of model building, RBGP makes use of
syntactic information and semantics information in a program to
capture the hidden patterns. When compared with GP-GOMEA,
ellynGP, and gplearn, RBGP outperformed the others on average
in the Penn machine learning benchmarks, RBGP achieving statis-
tically significant improvements over all other methods on 44% of
the problems.

CCS CONCEPTS
• Software and its engineering→ Genetic programming.
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1 INTRODUCTION
Genetic programming (GP) is one of the evolutionary computation
algorithms proposed by Koza [5]. GP and genetic algorithms (GAs)
are similar frameworks: Both of them are population-based black-
box optimization methods. Unlike GAs, GP evolves the encodings
of programs, instead of decision variables.

GP aims to let computers write programs by themselves. Since
its debut, GP has been widely applied in the field of symbolic
regression [3, 6, 18], which is slightly different from numerical
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regression. Numerical regression aims to find the best parame-
ters for a given fixed equation to fit the predicted outputs of the
equation to the targets. Yet, the choice of the given equation often
requires prior knowledge and expertise. In contrast, symbolic re-
gression requires less prior knowledge and instead uses a set of
basic operators such as +, −, ×, ÷, exp, and sin, and then finds a
good (if not the best) combination from the set to fit the target.

After the 90s, GAs have developed along the direction of model-
building genetic algorithms (MBGAs). DSMGA-II [2, 4] and LT-
GOMEA [1, 15, 16] are two branches of state of the art (SOTA)
in MBGAs. The concept is to learn the hidden patterns among
potential chromosomes by machine learning techniques. Then, by
utilizing these hidden patterns, MBGAs can generate potentially
better offspring during the recombination process. We believe that
GP benefits from a similar strategy.

This paper aims to develop model-based genetic programming
(MBGP) for symbolic regression, called ranging-binding genetic
programming algorithm (RBGP), which combines the concepts
of model building and symbolic regression genetic programming
(SRGP). During the evolution of SRGP, the offspring generated by
recombination of its parents with better fitness may not be able
to retain the superior characteristics [9, 10]. In order to preserve
the superiority of the parents as much as possible, syntactic and
semantic information of a program are utilized.

The proposed algorithm shows stronger optimization ability
on 38 problems out of real-world datasets on average than GP-
GOMEA [17], ellynGP [7], and gplearn [13]. The rest of this pa-
per is organized as follows. Section 2 briefly introduces the GP
framework and variants. Section 3 explains the proposed range
and binding MBGP. Section 4 describes experiment settings and
results in comparison to GP-GOMEA, ellynGP, and gplearn. In
addition, a discussion of the findings is given. Finally, section 5
makes a conclusion.

2 RANGING-BINDING GENETIC
PROGRAMMING

In the following section, the details of the proposed MBGP al-
gorithm are described. Firstly, the framework of the algorithm is
presented. Then, the two crucial components, ranging and binding,
are presented. Essentially, the RBGP algorithm is built upon the
SGP framework, incorporating binding and ranging to exploit the
syntax and semantics information.
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2.1 The framework of RBGP
The proposed method has three main components. The first is to
determine the frequency of each two-layer function. The second is
to select cut points for crossover without breaking commonly used
two-layer functions. The third is to pair programs for crossover
by aligning the range of predicted output with the target range.
In more detail, a cut point can separate a program tree into two
parts during the crossover. One of the parts is to be remained, and
the other part, which is also a valid subtree of the program, is
the part to be swapped. The subtree chosen from other programs
in the population with a narrower output range is selected to be
combined with the remaining part when the program’s output
range is wider than the target value range, and a subtree with a
wider output range is chosen otherwise. The algorithm flowchart
is shown in Figure 1.

Algorithm 1: RBGP framework
P : population, C : cut points for each program,
O : offspring, B : binding counter information,
R : ranging information

randomly initialize population P
while not meet the terminal condition do
B ← UpdateBindingInformation(P)
C ← DecideCutPoint(P,B)
R ← UpdateRangingInformation(P, C)
for 𝑖 ← 1 to |P | do

if should do the range crossover then
O𝑖 ← RangingCrossover(P𝑖 , C𝑖 , R)

else
O𝑖 ← do other SGP operators

end
end
P ← (𝜆 + 𝜇)-Selection(P, O)

end
return the best program in P

Algorithm 1 demonstrates the pseudo-code of the proposed
algorithm. The detail of binding-related operators and ranging-
related operators is introduced in the following subsection. In this
paper, the population is denoted by P, and P𝑖 is the 𝑖-th program
in the population. Furthermore, the frequency information of two-
layer functions is denoted by B, and the cut point information for
each program in one generation is denoted by C. O are offsprings,
which are candidates for the next generation. The ranging infor-
mation is denoted by R. Furthermore, The ranging information is
denoted by R. Furthermore, R𝑖,𝑑 is the ratio between the range
of output of 𝑖-th program and the range of target value , and R𝑖,𝑠
is the ratio between the range of terminal variable at a specific
dimension and the range of the output of the subtree which is
decided by the cut point of 𝑖-th program.

Each iteration of the "while loop" is one generation in the
proposed method. Each generation is based on the SGP frame-
work, with each program choosing the operator such as muta-
tion, crossover at random to generate offspring. In our algorithm,

crossover based on ranging is one of the operators that can be
chosen with high probability. After generating all offspring, the
(𝜆 + 𝜇)-selection is adopted to get the population in the next gen-
eration.
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Figure 1: The algorithm flowchart of RBGP

3 TEST PROBLEMS AND EXPERIMENTS
In this section, our proposed RBGP with and without the binding
mechanism are compared with GP-GOMEA, ellynGP and gplearn.
Then, benchmark problems and experiment settings used in this
paper are described. The empirical results are shown and discussed.

3.1 Test Problems
Penn machine learning benchmarks (PMLB) [8, 12] is a collection
of benchmark datasets for supervised machine learning including
classification and symbolic regression algorithms. PMLB collects
ground truth problems and black-box problems. The ground truth
problems include two sources, the Feynman symbolic regression
database, and the ODE-Strogatz repository. The former comes from
Feynman Lectures on Physics [11], representing static physical sys-
tems. The latter comes from Nonlinear Dynamics and Chaos: With
Applications to Physics, Biology, Chemistry, and Engineering [14],
which include non-linear and chaotic dynamical problems, such
as bacterial respiration and models for gliders. On the other hand,
black-box problems are collected from diverse domains such as
health information, business, technology, etc. In this paper, 38
problems in PMLB are used for experiments, and problem names
are shown in Table 1.

3.2 Experiment settings
In this paper, experiments are conducted in two scenarios. The first
is the black-box scenario. In this scenario, we split the training set

564



GP with Ranging-Binding Technique for Symbolic Regression GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

and testing set at a ratio of 75%/25%, and use 𝑘-fold validation to
select the best model in the training set and take the fitness on the
testing set as the result. The second is the ground-truth situation,
in which we take all data points as input and take the fitness of
the final evolved model as the result. The empirical results are the
average fitness of the best program after running each method
over 100 independent runs. The parameter settings for each of the
four methods in each run are as follows: population size of 500,
50 generations, 5-fold cross-validation, terminal set consisting of
variables for all dimensions, and function set consisting of add,
sub, mul, div*, log*, exp*, sqrt* and pow2.

The fitness is defined as the mean absolute error between target
value points and program output points by executing with input
data. The lower fitness means the model is fitter in this defini-
tion. Furthermore, some functions we used are protected versions.
The definitions of the protected version of those functions are as
Equation 1 to 4.

𝑑𝑖𝑣∗ (𝑥,𝑦) =
{
𝑥
𝑦 , if |𝑦 | ≥ 0.001
1, otherwise

(1)

𝑙𝑜𝑔∗ (𝑥) =
{
𝑙𝑜𝑔(𝑥) if 𝑥 ≥ 0.001
0, otherwise

(2)

𝑒𝑥𝑝∗ (𝑥) =
{
𝑒𝑥𝑝 (𝑥), if 𝑒𝑥𝑝 (𝑥) ≤ 1010

1010, otherwise
(3)

𝑠𝑞𝑟𝑡∗ (𝑥) = 𝑠𝑞𝑟𝑡 ( |𝑥 |). (4)

3.3 Results and Discussions
The results of the black-box scenario are shown in Table 2 and
the results of the ground-truth scenario are shown in Table 3.
On average, RBGP without binding results in a lower average
fitness value in both scenarios, showing a stronger optimization
ability than three SOTA. In addition, in the black-box scenario,
RBGP without binding shows a more generalized ability with
lower MSE on the testing data. Then the results also show that
RBGP generally improves performance, increasing the first rank
on 52% of the problems to 71%.

Table 4 displays the outcomes of the t-test that was carried out
between RBGP and each of the other compared methods, using
a significance level of 0.05. The null hypothesis in this t-test is
that there is no significant difference between the means of the
two groups being compared. The results are divided into three
categories: Significantly lowest, where RBGP fitness is significantly
lower than the other methods. No significant difference, where
RBGP fitness does not show a significant difference compared with
at least one other method. Not significantly lowest, where RBGP
fitness is higher than at least one other method.

4 CONCLUSION
This paper proposed a model-based SRGP with ranging and bind-
ing mechanisms to utilize the syntactic and semantic information
of programs. For semantics, the range difference ratio between the
output of the program and the target can be information for pair-
ing. For syntax, similar to the concept of ADF, two-layer functions
were viewed as binding units and decreased the probability of sep-
arating commonly used binding units. The experiments showed

Table 1: Test problems

No. Name No. Name
f1 strogatz_shearflow2 f20 fri_c3_500_5
f2 strogatz_shearflow1 f21 fri_c3_250_5
f3 strogatz_predprey2 f22 fri_c3_100_5
f4 strogatz_predprey1 f23 rmftsa_ladata
f5 strogatz_lv2 f24 fri_c2_250_10
f6 strogatz_lv1 f25 chatfield_4
f7 strogatz_glider2 f26 fri_c0_500_10
f8 strogatz_glider1 f27 fri_c1_250_10
f9 strogatz_barmag2 f28 fri_c3_500_10
f10 strogatz_barmag1 f29 feynman_test_9
f11 strogatz_bacres2 f30 feynman_test_7
f12 strogatz_bacres1 f31 feynman_test_6
f13 visualizing_galaxy f32 feynman_I_10_7
f14 sleuth_ex1605 f33 feynman_I_12_5
f15 fri_c1_100_5 f34 feynman_I_15_10
f16 fri_c0_500_5 f35 feynman_I_15_3x
f17 fri_c1_500_5 f36 feynman_II_3_24
f18 fri_c3_1000_5 f37 feynman_II_37_1
f19 fri_c0_100_5 f38 feynman_II_35_18

Table 2: Black-box scenario empirical results

No.
Comparisons Ours

GP-
GOMEA ellynGP gplearn RBGP

- binding RBGP

f1 0.448 0.612 0.146 0.092 0.085
f2 0.105 0.225 0.192 0.133 0.129
f3 1.670 0.529 0.385 0.374 0.224
f4 1.162 0.469 0.570 0.443 0.255
f5 0.299 0.218 0.146 0.107 0.073
f6 0.473 0.634 0.211 0.132 0.076
f7 0.860 0.323 0.335 0.251 0.242
f8 2.550 0.671 0.668 0.615 0.633
f9 0.143 0.222 0.120 0.072 0.071
f10 1.299 0.140 0.103 0.063 0.089
f11 2.305 0.723 0.507 0.554 0.407
f12 1.854 1.302 0.602 0.593 0.530
f13 90.093 227.590 88.113 84.969 81.333
f14 22.111 19.974 12.213 12.513 12.647
f15 1.299 0.812 0.798 0.783 0.789
f16 1.178 0.792 0.824 0.805 0.807
f17 1.496 0.800 0.824 0.806 0.816
f18 2.701 0.793 0.795 0.787 0.769
f19 1.688 0.856 0.833 0.850 0.835
f20 1.213 0.781 0.805 0.804 0.785
f21 1.903 0.786 0.796 0.798 0.791
f22 1.326 0.792 0.785 0.743 0.764
f23 2.048 1.920 1.834 1.821 1.807
f24 1.246 0.795 0.845 0.767 0.775
f25 364.006 33.566 34.232 33.316 34.606
f26 1.473 0.821 0.815 0.845 0.812
f27 1.199 0.825 0.838 0.836 0.819
f28 1.289 0.769 0.792 0.780 0.763
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Table 3: Ground-truth scenario empirical results

No.
Comparisons Ours

GP-
GOMEA ellynGP gplearn RBGP

- binding RBGP

f29 2080.423 1887.389 1919.632 1834.754 1443.437
f30 1.896 1.020 1.007 1.035 1.006
f31 0.288 0.238 0.211 0.219 0.195
f32 1.298 1.041 1.045 1.046 1.052
f33 10.189 4.291 4.140 4.239 4.001
f34 2.820 1.736 1.740 1.728 1.713
f35 1.972 1.363 1.356 1.357 1.393
f36 0.267 0.036 0.036 0.036 0.032
f37 30.796 19.020 17.799 17.695 17.439
f38 0.363 0.260 0.265 0.267 0.264

Table 4: T-test results

Category Problem No.

Significantly lowest
f1,f3,f4,f5,f6,f7,
f8,f9,f11,f12,f13,f18,
f22,f24,f29,f31,f33

No significant difference
f10,f15,f17,f19,f20,f21,
f23,f25,f26,f27,f28,f30,
f32,f34,f36,f37,f38

Not significantly lowest f2,f14,f16,f35

that both RBGP without binding and RBGP outperform the SOTA
GP algorithms on 38 problems out of PMLB on average both in
the black-box scenario and the ground-truth scenario. Further-
more, RBGP achieved statistically significant improvements over
all other methods on 44% of the problems.
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